Abstract
This study aims to demonstrate the capability of the digital image correlation (DIC) technique for evaluating full-field residual stresses in wire and arc-additive-manufactured (WAAM) components. Investigations were carried out on WAAM steel parts (wall deposited on a substrate) with two different wall heights: 24 mm and 48 mm. Mild steel solid wire AWS ER70S-6 was used to print WAAM walls on substrates that were rigidly clamped to H-profiles. DIC was used to monitor the bending deformation of WAAM parts during unclamping from the H-profiles, and residual stresses were calculated from the strain field captured during unclamping. Residual stresses determined from the proposed DIC-based method were verified with an analytical model and validated by the results from established residual stress measurement techniques, i.e., the contour method and X-ray diffraction.
Original language | English |
---|---|
Article number | 1702 |
Number of pages | 19 |
Journal | Materials |
Volume | 16 |
Issue number | 4 |
Early online date | 17 Feb 2023 |
DOIs | |
Publication status | Published - Feb 2023 |
Bibliographical note
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Keywords
- additive manufacturing
- contour method
- digital image correlation
- residual stresses
- wire + arc additive manufacturing
- X-ray diffraction