Determination of state space matrices for active vibration control using ansys finite element package

A. H. Daraji, J. M. Hale

Research output: Chapter in Book/Report/Conference proceedingConference proceeding

Abstract

This paper concerns optimal placement of discrete piezoelectric sensors and actuators for active vibration control, using a genetic algorithm based on minimization of linear quadratic index as an objective function. A new method is developed to get state space matrices for simple and complex structures with bonded sensors and actuators, using the ANSYS finite element package taking into account piezoelectric mass, stiffness and electromechanical coupling effects. The state space matrices for smart structures are highly important in active vibration control for the optimisation of sensor and actuator locations and investigation of open and closed loop system control response, both using simulation and experimentally. As an example, a flexible flat plate with bonded sensor/actuator pairs is represented in ANSYS using three dimensional SOLID45 elements for the passive structure and SOLID5 for the piezoelectric elements, from which the necessary state space matrices are obtained. To test the results, the plate is mounted as a cantilever and two sensor/actuator pairs are located at the optimal locations. These are used to attenuate the first six modes of vibration using active vibration reduction based on a classical and optimal linear quadratic control scheme. The plate is subject to forced vibration at the first, second and third natural frequencies and represented in ANSYS using a proportional derivative controller and compared with a Matlab model based on ANSYS state space matrices using linear quadratic control. It is shown that the ANSYS state space matrices describe the system efficiently and correctly.

Original languageEnglish
Title of host publicationASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2012
Pages1219-1229
Number of pages11
Volume1
EditionPARTS A AND B
DOIs
Publication statusPublished - 2012
Externally publishedYes
EventASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2012 - Chicago, United States
Duration: 12 Aug 201212 Aug 2012

Conference

ConferenceASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2012
CountryUnited States
CityChicago
Period12/08/1212/08/12

Keywords

  • ANSYS state space matrices
  • Electric charge
  • Genetic algorithm
  • Optimal placement
  • Piezoelectric sensor/actuator pair
  • Vibration control

ASJC Scopus subject areas

  • Modelling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Determination of state space matrices for active vibration control using ansys finite element package'. Together they form a unique fingerprint.

  • Cite this

    Daraji, A. H., & Hale, J. M. (2012). Determination of state space matrices for active vibration control using ansys finite element package. In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2012 (PARTS A AND B ed., Vol. 1, pp. 1219-1229) https://doi.org/10.1115/DETC2012-70990