Abstract
Essential tremor (ET) is a neurological disorder characterized by rhythmic, involuntary shaking of a part or parts of the body. The most common tremor is seen in the hands/arms and fingers. This paper presents an evaluation of ETs monitoring based on finger-to-nose test measurement as captured by small wireless devices working in shortwave or S-band frequency range. The acquired signals in terms of amplitude and phase information are used to detect a tremor in the hands. Linearly transforming raw phase data acquired in the S-band were carried out for calibrating the phase information and to improve accuracy. The data samples are used for classification using support vector machine algorithm. This model is used to differentiate the tremor and nontremor data efficiently based on secondary features that characterize ET. The accuracy of our measurements maintains linearity, and more than 90% accuracy rate is achieved between the feature set and data samples.
Original language | English |
---|---|
Article number | 2000107 |
Number of pages | 7 |
Journal | IEEE Journal of Translational Engineering in Health and Medicine |
Volume | 6 |
DOIs | |
Publication status | Published - 24 Jan 2018 |
Externally published | Yes |
Bibliographical note
Open accessKeywords
- S-band sensing technique
- essential tremor
- biomedical engineering
Fingerprint
Dive into the research topics of 'Detection of Essential Tremor at the S-Band'. Together they form a unique fingerprint.Profiles
-
Syed Aziz Shah
- Centre for Intelligent Healthcare - Associate Professor Research
Person: Teaching and Research