Detecting Port Scans against Mobile Devices with Neural Networks and Decision Trees

Christo Panchev, P. Dobrev, J. Nicholson

    Research output: Chapter in Book/Report/Conference proceedingChapter

    3 Citations (Scopus)


    Recently, mobile devices such as smartphones and tablets have emerged as one of the most popular forms of communication. This trend raises the question about the security of the private data and communication of the people using those devices. With increased computational resources and versatility the number of security threats on such devices is growing rapidly. Therefore, it is vital for security specialists to find adequate anti-measures against the threats. Machine Learning approaches with their ability to learn from and adapt to their environments provide a promising approach to modelling and protecting against security threats on mobile devices. This paper presents a comparative study and implementation of Decision Trees and Neural Network models for the detection of port scanning showing the differences between the responses on a desktop platform and a mobile device and the ability of the Neural Network model to adapt to the different environment and computational resource available on a mobile platform.
    Original languageEnglish
    Title of host publicationEngineering Applications of Neural Networks: 15th International Conference, EANN 2014, Sofia, Bulgaria, September 5-7, 2014. Proceedings
    EditorsValeri Mladenov, Chrisina Jayne, Lazaros Iliadis
    PublisherSpringer Verlag
    ISBN (Print)978-3-319-11070-7
    Publication statusPublished - 2014

    Bibliographical note

    This paper is not available on the repository


    • Intrusion Detection Port Scanning Cascade Correlation Neural Networks Decision Trees Android Mobile devices


    Dive into the research topics of 'Detecting Port Scans against Mobile Devices with Neural Networks and Decision Trees'. Together they form a unique fingerprint.

    Cite this