Design of an embedded inverse-feedforward biomolecular trackingcontroller for enzymatic reaction processes

Mathias Foo, Jongrae Kim, Rucha Sawlekar, Declan Bates

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
13 Downloads (Pure)


Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a ‘subtractor’ that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.
Original languageEnglish
Pages (from-to)145-157
Number of pages13
JournalComputers and Chemical Engineering
Early online date17 Jan 2017
Publication statusPublished - 6 Apr 2017

Bibliographical note

Under a Creative Commons Attribution 4.0 International (CC BY 4.0) License


  • Process control
  • Enzymatic reaction process
  • Chemical reaction network theory
  • Synthetic biology
  • Biological engineering

Fingerprint Dive into the research topics of 'Design of an embedded inverse-feedforward biomolecular trackingcontroller for enzymatic reaction processes'. Together they form a unique fingerprint.

Cite this