Abstract
A button sensor antenna for on-body monitoring in wireless body area network (WBAN) systems is presented. Due to the close coupling between the sensor antenna and the human body, it is highly challenging to design sensor antenna devices. In this paper, a mechanically robust system is proposed that integrates a dual-band button antenna with a wireless sensor module designed on a printed circuit board (PCB). The system features a small footprint and has good radiation characteristics and efficiency. This was fabricated, and the measured and simulated results are in good agreement. The design offers a wide range of omnidirectional radiation patterns in free space, with a reflection coefficient (S11) of −29.30 (−30.97) dB, a maximum gain of 1.75 (5.65) dBi, and radiation efficiency of 71.91 (92.51)% in the lower and upper bands, respectively. S11 reaches −23.07 (−27.07) dB and −30.76 (−31.12) dB, respectively, with a gain of 2.09 (6.70) dBi and 2.16 (5.67) dBi, and radiation efficiency of 65.12 (81.63)% and 75.00 (85.00)%, when located on the body for the lower and upper bands, respectively. The performance is minimally affected by bending, movement, and fabrication tolerances. The specific absorption rate (SAR) values are below the regulatory limitations for the spatial average over 1 g (1.6 W/Kg) and 10 g of tissues (2.0 W/Kg). For both indoor and outdoor conditions, experimental results of the range tests confirm the coverage of up to 40 m.
Original language | English |
---|---|
Article number | 475 |
Number of pages | 33 |
Journal | Micromachines |
Volume | 13 |
Issue number | 3 |
DOIs | |
Publication status | Published - 20 Mar 2022 |
Bibliographical note
Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).Funder
Funding Information:Funding: The authors would like to thank the Universiti Teknologi PETRONAS for supporting this research work. This work is funded by YUTP, through the research grant number 015LC0-106.
Keywords
- body centric communication
- button sensor antenna
- specific absorption rate (SAR)
ASJC Scopus subject areas
- Control and Systems Engineering
- Mechanical Engineering
- Electrical and Electronic Engineering