Defects and dopant properties of Li3V2(PO4)3

Navaratnarajah Kuganathan, Alexander Chroneos

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)
26 Downloads (Pure)

Abstract

Polyanion phosphate based Li3V2(PO4)3 material has attracted considerable attention as a novel cathode material for potential use in rechargeable lithium ion batteries. The defect chemistry and dopant properties of this material are studied using well-established atomistic scale simulation techniques. The most favourable intrinsic defect process is the Li Frenkel (0.45 eV/defect) ensuring the formation of Li vacancies required for Li diffusion via the vacancy mechanism. Long range lithium paths via the vacancy mechanism were constructed and it is confirmed that the lowest activation energy of migration (0.60 eV) path is three dimensional with curved trajectory. The second most stable defect energy process is calculated to be the anti-site defect, in which Li and V ions exchange their positions (0.91 eV/defect). Tetravalent dopants were considered on both V and P sites in order to form Li vacancies needed for Li diffusion and the Li interstitials to increase the capacity respectively. Doping by Zr on the V site and Si on the P site are calculated to be energetically favourable.

Original languageEnglish
Article number333
Number of pages8
JournalScientific Reports
Volume9
Issue number1
Early online date23 Jan 2019
DOIs
Publication statusPublished - 23 Jan 2019

Bibliographical note

CC-BY Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Defects and dopant properties of Li3V2(PO4)3'. Together they form a unique fingerprint.

Cite this