Abstract
Layered Li2RuO3 is an important candidate cathode material in rechargeable lithium ion batteries because of its novel anionic redox process and high reversible capacity. Atomistic scale simulations are used to calculate the intrinsic defect process, favourable dopants and migration energies of lithium ion diffusions together with migration paths in Li2RuO3. The Li Frenkel is calculated to be the most favourable intrinsic defect type. The cation anti-site defect, in which Li and Ru ions exchange their positions is 1.89 eV/defect suggesting that this defect would be observed at high temperatures. Long range vacancy assisted lithium diffusion paths were calculated and it is confirmed that the lowest overall activation energy (0.73 eV) migration path is along the ab plane. Trivalent dopants (Al3+, Co3+, Sc3+, In3+, Y3+, Gd3+ and La3+) were considered to create additional Li in Li2RuO3. Here we show that Al3+ or Co3+ are the ideal dopants and this is in agreement with the experimental studies reported on Co3+ doping in Li2RuO3.
Original language | English |
---|---|
Article number | 550 |
Number of pages | 9 |
Journal | Scientific Reports |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 24 Jan 2019 |
Bibliographical note
CC-BY Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Keywords
- Multidisciplinary
ASJC Scopus subject areas
- General