Defect Chemistry and Li-ion Diffusion in Li2RuO3

Research output: Contribution to journalArticle

12 Citations (Scopus)
18 Downloads (Pure)

Abstract

Layered Li2RuO3 is an important candidate cathode material in rechargeable lithium ion batteries because of its novel anionic redox process and high reversible capacity. Atomistic scale simulations are used to calculate the intrinsic defect process, favourable dopants and migration energies of lithium ion diffusions together with migration paths in Li2RuO3. The Li Frenkel is calculated to be the most favourable intrinsic defect type. The cation anti-site defect, in which Li and Ru ions exchange their positions is 1.89 eV/defect suggesting that this defect would be observed at high temperatures. Long range vacancy assisted lithium diffusion paths were calculated and it is confirmed that the lowest overall activation energy (0.73 eV) migration path is along the ab plane. Trivalent dopants (Al3+, Co3+, Sc3+, In3+, Y3+, Gd3+ and La3+) were considered to create additional Li in Li2RuO3. Here we show that Al3+ or Co3+ are the ideal dopants and this is in agreement with the experimental studies reported on Co3+ doping in Li2RuO3.

Original languageEnglish
Article number550
Number of pages9
JournalScientific Reports
Volume9
Issue number1
DOIs
Publication statusPublished - 24 Jan 2019

Fingerprint

Lithium
Ions
Ion Exchange
Oxidation-Reduction
Cations
Electrodes
Temperature

Bibliographical note

CC-BY Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

ASJC Scopus subject areas

  • General

Cite this

Defect Chemistry and Li-ion Diffusion in Li2RuO3. / Kuganathan, Navaratnarajah; Kordatos, Apostolos; Chroneos, Alexander.

In: Scientific Reports, Vol. 9, No. 1, 550, 24.01.2019.

Research output: Contribution to journalArticle

@article{88086ad1809243b08e130113ec0bac1b,
title = "Defect Chemistry and Li-ion Diffusion in Li2RuO3",
abstract = "Layered Li2RuO3 is an important candidate cathode material in rechargeable lithium ion batteries because of its novel anionic redox process and high reversible capacity. Atomistic scale simulations are used to calculate the intrinsic defect process, favourable dopants and migration energies of lithium ion diffusions together with migration paths in Li2RuO3. The Li Frenkel is calculated to be the most favourable intrinsic defect type. The cation anti-site defect, in which Li and Ru ions exchange their positions is 1.89 eV/defect suggesting that this defect would be observed at high temperatures. Long range vacancy assisted lithium diffusion paths were calculated and it is confirmed that the lowest overall activation energy (0.73 eV) migration path is along the ab plane. Trivalent dopants (Al3+, Co3+, Sc3+, In3+, Y3+, Gd3+ and La3+) were considered to create additional Li in Li2RuO3. Here we show that Al3+ or Co3+ are the ideal dopants and this is in agreement with the experimental studies reported on Co3+ doping in Li2RuO3.",
author = "Navaratnarajah Kuganathan and Apostolos Kordatos and Alexander Chroneos",
note = "CC-BY Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.",
year = "2019",
month = "1",
day = "24",
doi = "10.1038/s41598-018-36865-4",
language = "English",
volume = "9",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - Defect Chemistry and Li-ion Diffusion in Li2RuO3

AU - Kuganathan, Navaratnarajah

AU - Kordatos, Apostolos

AU - Chroneos, Alexander

N1 - CC-BY Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

PY - 2019/1/24

Y1 - 2019/1/24

N2 - Layered Li2RuO3 is an important candidate cathode material in rechargeable lithium ion batteries because of its novel anionic redox process and high reversible capacity. Atomistic scale simulations are used to calculate the intrinsic defect process, favourable dopants and migration energies of lithium ion diffusions together with migration paths in Li2RuO3. The Li Frenkel is calculated to be the most favourable intrinsic defect type. The cation anti-site defect, in which Li and Ru ions exchange their positions is 1.89 eV/defect suggesting that this defect would be observed at high temperatures. Long range vacancy assisted lithium diffusion paths were calculated and it is confirmed that the lowest overall activation energy (0.73 eV) migration path is along the ab plane. Trivalent dopants (Al3+, Co3+, Sc3+, In3+, Y3+, Gd3+ and La3+) were considered to create additional Li in Li2RuO3. Here we show that Al3+ or Co3+ are the ideal dopants and this is in agreement with the experimental studies reported on Co3+ doping in Li2RuO3.

AB - Layered Li2RuO3 is an important candidate cathode material in rechargeable lithium ion batteries because of its novel anionic redox process and high reversible capacity. Atomistic scale simulations are used to calculate the intrinsic defect process, favourable dopants and migration energies of lithium ion diffusions together with migration paths in Li2RuO3. The Li Frenkel is calculated to be the most favourable intrinsic defect type. The cation anti-site defect, in which Li and Ru ions exchange their positions is 1.89 eV/defect suggesting that this defect would be observed at high temperatures. Long range vacancy assisted lithium diffusion paths were calculated and it is confirmed that the lowest overall activation energy (0.73 eV) migration path is along the ab plane. Trivalent dopants (Al3+, Co3+, Sc3+, In3+, Y3+, Gd3+ and La3+) were considered to create additional Li in Li2RuO3. Here we show that Al3+ or Co3+ are the ideal dopants and this is in agreement with the experimental studies reported on Co3+ doping in Li2RuO3.

UR - http://www.scopus.com/inward/record.url?scp=85060542207&partnerID=8YFLogxK

U2 - 10.1038/s41598-018-36865-4

DO - 10.1038/s41598-018-36865-4

M3 - Article

VL - 9

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 550

ER -