Customer Shopping Behavior Analysis Using RFID and Machine Learning Models

Ganjar Alfian, Muhammad Qois Huzyan Octava, Farhan Mufti Hilmy, Rachma Aurya Nurhaliza, Yuris Mulya Saputra, Divi Galih Prasetyo Putri, Firma Syahrian, Norma Latif Fitriyani, Fransiskus Tatas Dwi Atmaji, Umar Farooq, Dat Tien Nguyen, Muhammad Syafrudin

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)
    90 Downloads (Pure)

    Abstract

    Analyzing customer shopping habits in physical stores is crucial for enhancing the retailer–customer relationship and increasing business revenue. However, it can be challenging to gather data on customer browsing activities in physical stores as compared to online stores. This study suggests using RFID technology on store shelves and machine learning models to analyze customer browsing activity in retail stores. The study uses RFID tags to track product movement and collects data on customer behavior using receive signal strength (RSS) of the tags. The time-domain features were then extracted from RSS data and machine learning models were utilized to classify different customer shopping activities. We proposed integration of iForest Outlier Detection, ADASYN data balancing and Multilayer Perceptron (MLP). The results indicate that the proposed model performed better than other supervised learning models, with improvements of up to 97.778% in accuracy, 98.008% in precision, 98.333% in specificity, 98.333% in recall, and 97.750% in the f1-score. Finally, we showcased the integration of this trained model into a web-based application. This result can assist managers in understanding customer preferences and aid in product placement, promotions, and customer recommendations.
    Original languageEnglish
    Article number551
    Number of pages20
    JournalInformation
    Volume14
    Issue number10
    Early online date8 Oct 2023
    DOIs
    Publication statusPublished - 8 Oct 2023

    Bibliographical note

    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

    Keywords

    • shopping behavior
    • RFID
    • RSS
    • machine learning
    • outlier detection
    • data balancing

    Fingerprint

    Dive into the research topics of 'Customer Shopping Behavior Analysis Using RFID and Machine Learning Models'. Together they form a unique fingerprint.

    Cite this