Abstract
Recent research on self-healing concrete has shown some drawbacks and conflicts between the different techniques such as difficulty in casting, healing agent release, preparation complexity, high safety requirements against bacteria protection, undesirable expansion, and uncertainty in healing product generation. Despite these limitations, the hybrid technique was suggested and showed promising results. This paper explores the hybridization of the two techniques; autonomous and autogenous by utilizing the B. subtilis bacteria, mineral admixtures like fly ash, and Polyvinyl alcohol fibers (PVA) together. The experimental program involves assessing the self-healing efficiency when coupling the bacteria, fly ash, and PVA fiber by assigning six mixtures, including a control OPC. The six mixtures encountered the Bacteria addition at certain concentrations and varying PVA fiber percentages; 1, 1.5, and 2% while partially replacing the cement replacement with 20% fly ash, while the last mixture combines both the bacteria, fly ash and 1% PVA fiber. Mechanical properties such as compressive and flexural strength, in addition to, water absorption and sorptivity as transport properties were examined for concrete repair and restoration purposes. The results reveal that the B. subtilis bacteria significantly enhance the compressive and flexural strength recovery along with lowering sorptivity and absorption rate compared to those with PVA addition when exposed to wet and dry cycles of curing at 28 days of age. The coupling effect, on the other hand, provides a substantial gain in strength of 63% at a longer age (56 days), indicating the potential of this approach for long-term concrete repair. Despite the challenges of the B. subtilis survival bacteria, the coupling of both bacteria and PVA fiber demonstrates superior performance in maintaining the durability of repaired concrete in the long term.
| Original language | English |
|---|---|
| Pages (from-to) | 925-948 |
| Number of pages | 24 |
| Journal | International Journal of Civil Engineering |
| Volume | 22 |
| Issue number | 6 |
| Early online date | 1 Feb 2024 |
| DOIs | |
| Publication status | Published - Jun 2024 |
Bibliographical note
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Keywords
- Self-healing techniques
- Absorption
- Durability
- Mechanical properties
- Concrete repair
- Crack widths