Corner contribution to cluster numbers in the Potts model

Istvan A. Kovacs, Eren Metin Elci, Martin Weigel, Ferenc Igloi

    Research output: Contribution to journalArticlepeer-review

    7 Citations (Scopus)
    48 Downloads (Pure)

    Abstract

    For the two-dimensional Q-state Potts model at criticality, we consider Fortuin-Kasteleyn and spin clusters and study the average number N of clusters that intersect a given contour . To leading order, N is proportional to the length of the curve. Additionally, however, there occur logarithmic contributions related to the corners of . These are found to be universal and their size can be calculated employing techniques from conformal field theory. For the Fortuin-Kasteleyn clusters relevant to the thermal phase transition, we find agreement with these predictions from large-scale numerical simulations. For the spin clusters, on the other hand, the cluster numbers are not found to be consistent with the values obtained by analytic continuation, as conventionally assumed.
    Original languageEnglish
    JournalPhysical Review B
    Volume89
    Issue numberArticle 064421
    DOIs
    Publication statusPublished - 24 Feb 2014

    Bibliographical note

    The publisher the American Physical Society gives permission for this article to be archived on the institutional repository

    Fingerprint

    Dive into the research topics of 'Corner contribution to cluster numbers in the Potts model'. Together they form a unique fingerprint.

    Cite this