Coriolis mass flow metering for three-phase flow: A case study

M. Henry, M. Tombs, M. Zamora, Feibiao Zhou

Research output: Contribution to journalArticle

26 Citations (Scopus)
4 Downloads (Pure)

Abstract

Previous work has described the use of Coriolis mass flow metering for two-phase (gas/liquid) flow. As the Coriolis meter provides both mass flow and density measurements, it is possible to resolve the mass flows of the gas and liquid in a two-phase mixture if their respective densities are known. To apply Coriolis metering to a three-phase (oil/water/gas) mixture, an additional measurement is required. In the work described in this paper, a water cut meter is used to indicate what proportion of the liquid flow is water. This provides sufficient information to calculate the mass flows of the water, oil and gas components. This paper is believed to be the first to detail an implementation of three-phase flow metering using Coriolis technology where phase separation is not applied.

Trials have taken place at the UK National Flow Standards Laboratory three-phase facility, on a commercial three-phase meter based on the Coriolis meter/ water cut measurement principle. For the 50 mm metering system, the total liquid flow rate ranged from 2.4 kg/s up to 11 kg/s, the water cut ranged from 0% to 100%, and the gas volume fraction (GVF) from 0 to 50%. In a formally observed trial, 75 test points were taken at a temperature of approximately 40 °C and with a skid inlet pressure of approximately 350 kPa. Over 95% of the test results fell within the desired specification, defined as follows: the total (oil+water) liquid mass flow error should fall within ±2.5%, and the gas mass flow error within ±5.0%. The oil mass flow error limit is ±6.0% for water cuts less than 70%, while for water cuts between 70% and 95% the oil mass flow error limit is ±15.0%.

These results demonstrate the potential for using Coriolis mass flow metering combined with water cut metering for three-phase (oil/water/gas) measurement.
Original languageEnglish
Pages (from-to)112-122
Number of pages1
JournalFlow Measurement and Instrumentation
Volume30
Early online date16 Jan 2013
DOIs
Publication statusPublished - Apr 2013
Externally publishedYes

Bibliographical note

NOTICE: this is the author’s version of a work that was accepted for publication in Flow Measurement and Instrumentation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Flow Measurement and Instrumentation, 30, (2013) DOI: 10.1016/j.flowmeasinst.2013.01.003

Keywords

  • Coriolis
  • Mass flow
  • Neural net
  • Multi-phase flow
  • Two phase flow
  • Oil and gas

Fingerprint Dive into the research topics of 'Coriolis mass flow metering for three-phase flow: A case study'. Together they form a unique fingerprint.

  • Cite this