Construction and Experimental Study of an Elevation Linear Fresnel Reflector

J. D. Nixon, P. A. Davies

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
78 Downloads (Pure)

Abstract

This paper outlines a novel elevation linear Fresnel reflector (ELFR) and presents and validates theoretical models defining its thermal performance. To validate the models, a series of experiments were carried out for receiver temperatures in the range of 30-100 °C to measure the heat loss coefficient, gain in heat transfer fluid (HTF) temperature, thermal efficiency, and stagnation temperature. The heat loss coefficient was underestimated due to the model exclusion of collector end heat losses. The measured HTF temperature gains were found to have a good correlation to the model predictions - less than a 5% difference. In comparison to model predictions for the thermal efficiency and stagnation temperature, measured values had a difference of -39% to +31% and 22-38%, respectively. The difference between the measured and predicted values was attributed to the low-temperature region for the experiments. It was concluded that the theoretical models are suitable for examining linear Fresnel reflector (LFR) systems and can be adopted by other researchers.

Original languageEnglish
Article number031001
Number of pages10
JournalJournal of Solar Energy Engineering, Transactions of the ASME
Volume138
Issue number3
Early online date23 Feb 2016
DOIs
Publication statusPublished - 1 Jun 2016
Externally publishedYes

Keywords

  • Temperature
  • heat losses
  • thermal efficiency
  • construction

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Construction and Experimental Study of an Elevation Linear Fresnel Reflector'. Together they form a unique fingerprint.

Cite this