Abstract
The understanding of self- and dopant diffusion properties over a range of temperatures and pressures can be technologically important for the formation of defined and efficient nanoelectronic devices. Phosporous, Arsenic and antimony are n-type dopants that can be considered for n-channel germanium metal oxide semiconductor field effect transistors. Using recent experimental data we show that elastic and expansivity data can reproduce the self-diffusion and n-type dopant diffusion coefficient of germanium in the temperature range 702–1177 K. This is achieved in the framework of the cBΩ model, which assumes that the defect Gibbs energy is proportinal to the isothermal bulk modulus and the mean volume per atom.
Original language | English |
---|---|
Pages (from-to) | 179–183 |
Journal | Materials Science in Semiconductor Processing |
Volume | 36 |
Early online date | 17 Apr 2015 |
DOIs | |
Publication status | Published - 2015 |
Bibliographical note
The full text of this item is not available from the repository.NOTICE: this is the author’s version of a work that was accepted for publication in Materials Science in Semiconductor Processing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials Science in Semiconductor Processing [Vol 36, (2015)] DOI: 10.1016/j.mssp.2015.03.053 .
Keywords
- germanium
- diffusion
- n-type dopants