TY - JOUR
T1 - Computational estimation of lateral pile displacement in layered sand using experimental data
AU - Khari, Mahdy
AU - Dehghanbanadaki, Ali
AU - Motamedi, Shervin
AU - Jahed Armaghanid, Danial
PY - 2019/11
Y1 - 2019/11
N2 - In this research, 150 experimental tests were conducted on a series of derived single piles embedded in sand layer. The sand samples were reconstructed with the pluviation method in the two relative densities of 30% (loose state) and 75% (dense state). The pile lateral displacement values were recorded subjected to the combination of the lateral and vertical static loads until failure occurred. In addition, for the estimation of lateral displacement of piles, different Multi-Layer Perceptron Artificial Neural Network models (MLP-ANN) were created and tested. The experimental results showed that when the driving energy increased from 2 J to 4 J, the piles lateral displacement values increased by about 20%. Besides, the measured lateral displacement values of shorter piles were significantly lower compared to the longer piles at the same loading conditions. In addition, the results of computational efforts indicated that the optimum MLP-ANN model presented satisfactory results in the terms of mean square error and regression indices. Moreover, sensitivity analysis showed that pile length and driving energy were the most influential factors on the estimation of lateral displacement recordings.
AB - In this research, 150 experimental tests were conducted on a series of derived single piles embedded in sand layer. The sand samples were reconstructed with the pluviation method in the two relative densities of 30% (loose state) and 75% (dense state). The pile lateral displacement values were recorded subjected to the combination of the lateral and vertical static loads until failure occurred. In addition, for the estimation of lateral displacement of piles, different Multi-Layer Perceptron Artificial Neural Network models (MLP-ANN) were created and tested. The experimental results showed that when the driving energy increased from 2 J to 4 J, the piles lateral displacement values increased by about 20%. Besides, the measured lateral displacement values of shorter piles were significantly lower compared to the longer piles at the same loading conditions. In addition, the results of computational efforts indicated that the optimum MLP-ANN model presented satisfactory results in the terms of mean square error and regression indices. Moreover, sensitivity analysis showed that pile length and driving energy were the most influential factors on the estimation of lateral displacement recordings.
KW - Lateral displacement
KW - Piles
KW - Sand
KW - MLP-ANN
KW - Simulation approach
UR - http://www.scopus.com/inward/record.url?scp=85067604093&partnerID=8YFLogxK
U2 - 10.1016/j.measurement.2019.04.081
DO - 10.1016/j.measurement.2019.04.081
M3 - Article
SN - 0263-2241
VL - 146
SP - 110
EP - 118
JO - Measurement
JF - Measurement
ER -