Clinical Evaluation of Respiratory Rate Measurements on COPD (Male) Patients Using Wearable Inkjet-Printed Sensor

Ala’aldeen Al-Halhouli, Loiy Al-Ghussain, Osama Khallouf, Alexander Rabadi, Jafar Alawadi, Haipeng Liu, Khaled Al Oweidat, Fei Chen, Dingchang Zheng

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)
    88 Downloads (Pure)

    Abstract

    Introduction: Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease that causes long-term breathing problems. The reliable monitoring of respiratory rate (RR) is very important for the treatment and management of COPD. Based on inkjet printing technology, we have developed a stretchable and wearable sensor that can accurately measure RR on normal subjects. Currently, there is a lack of comprehensive evaluation of stretchable sensors in the monitoring of RR on COPD patients. We aimed to investigate the measurement accuracy of our sensor on COPD patients. Methodology: Thirty-five patients (Mean ± SD of age: 55.25 ± 13.76 years) in different stages of COPD were recruited. The measurement accuracy of our inkjet-printed (IJPT) sensor was evaluated at different body postures (i.e., standing, sitting at 90 , and lying at 45 ) on COPD patients. The RR recorded by the IJPT sensor was compared with that recorded by the reference e-Health sensor using paired T-test and Wilcoxon signed-rank test. Analysis of variation (ANOVA) was performed to investigate if there was any significant effect of individual difference or posture on the measurement error. Statistical significance was defined as p-value less than 0.05. Results: There was no significant difference between the RR measurements collected by the IJPT sensor and the e-Health reference sensor overall and in three postures (p > 0.05 in paired T-tests and Wilcoxon signed-rank tests). The sitting posture had the least measurement error of −0.0542 ± 1.451 bpm. There was no significant effect of posture or individual difference on the measurement error or relative measurement error (p > 0.05 in ANOVA). Conclusion: The IJPT sensor can accurately measure the RR of COPD patients at different body postures, which provides the possibility for reliable monitoring of RR on COPD patients.

    Original languageEnglish
    Article number468
    Number of pages19
    JournalSensors
    Volume21
    Issue number2
    DOIs
    Publication statusPublished - 11 Jan 2021

    Bibliographical note

    This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Keywords

    • COPD patients
    • Clinical evaluation
    • Flexible and wearable sensors
    • Inkjet printing
    • Respiratory rate

    ASJC Scopus subject areas

    • Analytical Chemistry
    • Biochemistry
    • Atomic and Molecular Physics, and Optics
    • Instrumentation
    • Electrical and Electronic Engineering

    Fingerprint

    Dive into the research topics of 'Clinical Evaluation of Respiratory Rate Measurements on COPD (Male) Patients Using Wearable Inkjet-Printed Sensor'. Together they form a unique fingerprint.

    Cite this