Buckling and post-buckling of a composite C-section with cutout and flange reinforcement

S. Guo, D. Li, Xiang Zhang, J. Xiang

Research output: Contribution to journalArticle

28 Citations (Scopus)


This paper presents an investigation into the effect of cutout and flange reinforcement on the buckling and post-buckling behaviour of a carbon/epoxy composite C-section structure. The C-section having a cutout in the web is clamped at one end and subjected to a shear load at the other free end. Three different stiffener reinforcements were investigated in finite element analysis by using MSC Nastran. Buckling load was predicted by using both linear and nonlinear FE analysis. Experiments were carried out to validate the numerical model and results. Subsequently post-buckling analysis was carried out by predicting the load–deflection response of the C-section beam in nonlinear analysis. Tsai-Wu failure criterion was used to detect the first-play-failure load. The effect of circular and diamond cutout shape and effective flange reinforcements were investigated. The results show that the cutout and reinforcement have little effect on the buckling stability. However an L-shape stiffener to reinforce the C-section flange can improve the critical failure load by 20.9%.
Original languageEnglish
Pages (from-to)119–124
JournalComposites Part B: Engineering
Publication statusPublished - 2014

Bibliographical note

This paper is not available on the repository


  • Carbon–carbon composites (CCCs)
  • A. Discontinuous reinforcement
  • B. Buckling
  • Post-buckling


Dive into the research topics of 'Buckling and post-buckling of a composite C-section with cutout and flange reinforcement'. Together they form a unique fingerprint.

Cite this