Biomechanical Analysis of Force Distribution in Human Finger Extensor Mechanisms

Dan Hu, Lei Ren, David Howard, Changfu Zong

    Research output: Contribution to journalArticlepeer-review

    17 Citations (Scopus)
    53 Downloads (Pure)

    Abstract

    The complexities of the function and structure of human fingers have long been recognised. The in vivo forces in the human finger tendon network during different activities are critical information for clinical diagnosis, surgical treatment, prosthetic finger design, and biomimetic hand development. In this study, we propose a novel method for in vivo force estimation for the finger tendon network by combining a three-dimensional motion analysis technique and a novel biomechanical tendon network model. The extensor mechanism of a human index finger is represented by an interconnected tendinous network moving around the phalanx’s dorsum. A novel analytical approach based on the “Principle of Minimum Total Potential Energy” is used to calculate the forces and deformations throughout the tendon network of the extensor mechanism when subjected to an external load and with the finger posture defined by measurement data. The predicted deformations and forces in the tendon network are in broad agreement with the results obtained by previous experimental in vitro studies. The proposed methodology provides a promising tool for investigating the biomechanical function of complex interconnected tendon networks in vivo.
    Original languageEnglish
    Article number 743460
    Number of pages9
    JournalBioMed Research International
    Volume2014
    Issue number743460
    DOIs
    Publication statusPublished - 9 Jul 2014

    Bibliographical note

    Copyright © 2014 Dan Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

    Fingerprint

    Dive into the research topics of 'Biomechanical Analysis of Force Distribution in Human Finger Extensor Mechanisms'. Together they form a unique fingerprint.

    Cite this