Abstract
Batteries are the bottleneck technology of electric vehicles (EV), which host complex and hardly observable internal chemical reactions. Therefore, a precise mathematical model is crucial for the battery management system (BMS) to ensure the secure and stable operation of the battery. Aiming at achieving a flexible, self-configuring, reliable BMS, this paper mainly focuses on the following research points: Firstly, a Cloud-based BMS (C-BMS) is established based on the Cyber-Physical system (CPS), and the conjunction working mode between the C-BMS and the BMS in vehicles (V-BMS) is also proposed. Then, we make the first attempt to apply the Deep Belief Network-Back Propagation (DBN-BP) algorithm to battery modeling issues. The idea is to fully excavate the hidden features in battery big data. Using the battery data extracted from electric buses, the effectiveness and accuracy of the model are validated. The error of the estimated battery terminal voltage is within 2.5%.
Original language | English |
---|---|
Title of host publication | 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS) |
Publisher | IEEE |
Pages | 161-166 |
Number of pages | 6 |
ISBN (Print) | 9781538685006 |
DOIs | |
Publication status | Published - May 2019 |
Externally published | Yes |
Event | IEEE International Conference on Industrial Cyber Physical Systems - Taipei, Taiwan, Province of China Duration: 6 May 2019 → 9 May 2019 |
Conference
Conference | IEEE International Conference on Industrial Cyber Physical Systems |
---|---|
Abbreviated title | ICPS 2019 |
Country/Territory | Taiwan, Province of China |
City | Taipei |
Period | 6/05/19 → 9/05/19 |