Abstract
Digital retinal imaging is a challenging screening method for which effective, robust and cost-effective approaches are still to be developed. Regular screening for diabetic retinopathy and diabetic maculopathy diseases is necessary in order to identify the group at risk of visual impairment. This paper presents a novel automatic detection of diabetic retinopathy and maculopathy in eye fundus images by employing fuzzy image processing techniques. The paper first introduces the existing systems for diabetic retinopathy screening, with an emphasis on the maculopathy detection methods. The proposed medical decision support system consists of four parts, namely: image acquisition, image preprocessing including four retinal structures localisation, feature extraction and the classification of diabetic retinopathy and maculopathy. A combination of fuzzy image processing techniques, the Circular Hough Transform and several feature extraction methods are implemented in the proposed system. The paper also presents a novel technique for the macula region localisation in order to detect the maculopathy. In addition to the proposed detection system, the paper highlights a novel online dataset and it presents the dataset collection, the expert diagnosis process and the advantages of our online database compared to other public eye fundus image databases for diabetic retinopathy purposes.
Original language | English |
---|---|
Pages (from-to) | 249-267 |
Number of pages | 18 |
Journal | Brain Informatics |
Volume | 3 |
Issue number | 4 |
Early online date | 16 Mar 2016 |
DOIs | |
Publication status | Published - Dec 2016 |
Keywords
- Diabetic retinopathy
- Maculopathy
- Eye screening
- Colour fundus images
- Fuzzy image processing