Abstract
New families of three-dimensional nonlinear traveling waves are discovered in pipe flow. In contrast with known waves, they possess no discrete rotational symmetry and exist at a significantly lower Reynolds numbers (Re). First to appear is a mirror-symmetric traveling wave which is born in a saddle node bifurcation at Re=773. As Re increases, "asymmetric" modes arise through a symmetry-breaking bifurcation. These look to be a minimal coherent unit consisting of one slow streak sandwiched between two fast streaks located preferentially to one side of the pipe. Helical and nonhelical rotating waves are also found, emphasizing the richness of phase space even at these very low Reynolds numbers.
Original language | English |
---|---|
Article number | 074502 |
Journal | Physical Review Letters |
Volume | 99 |
Issue number | 7 |
DOIs | |
Publication status | Published - 16 Aug 2007 |
ASJC Scopus subject areas
- Physics and Astronomy(all)