Assessment of the effect of isolated porosity defects on the fatigue performance of additive manufactured titanium alloy

Romali Biswal, Abdul Syed, Xiang Zhang

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Studies on additive manufactured (AM) materials have shown that porosity reduces the fatigue strength. However, the quantitative impact is not well understood. This paper presents a mechanistic approach to quantify the influence of size, location and shape of gas pores on the fatigue strength of AM Ti-6Al-4V. Ideal spherical and oblate spherical pore geometries were used in the finite element (FE) analysis. The FE results showed a stress concentration factor of 2.08 for an internal spherical pore, 2.1 for a surface hemispherical pore and 2.5 for an internal oblate spherical pore. Subsurface pores within a distance of the pore diameter from the free surface were found to be most critical. The material’s constitutive relation under the cyclic load was modelled by a mixed non-linear hardening rule that was calibrated with published literature on selective laser melted Ti-6Al-4V. The cyclic plasticity effect caused a local mean stress relaxation, which was found to be dependent on the pore geometry, the applied stress amplitude and the stress ratio. Fatigue life was predicted by using the FE calculated local strain amplitude and maximum stress in the strain-life relationship proposed by Smith-Watson-Topper. The methodology was validated by published literature with crack initiation at gas pores of known size, location, and shape. Parametric study showed that for internal pores, fatigue performance is more sensitive to the shape and location of the pore than the size. An S-N curve was proposed by the parametric study to account for the fatigue strength reduction due to internal gas pores.
Original languageEnglish
Pages (from-to)433-442
Number of pages10
JournalAdditive Manufacturing
Volume23
Early online date23 Aug 2018
DOIs
Publication statusPublished - Oct 2018

    Fingerprint

Bibliographical note

NOTICE: this is the author’s version of a work that was accepted for publication in Additive Manufacturing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Additive Manufacturing, vol 23, 2018 DOI: 10.1016/j.addma.2018.08.024

© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

  • Porosity defects
  • stress concentration factor
  • additive manufactured Ti-6Al-4V
  • finite element modelling
  • fatigue life prediction

Cite this