Abstract
Real time detection of anomalies is crucial in structural health monitoring applications as it is used for early detection of structural damage and to identify abnormal operating conditions that can shorten the life of operating structures. A new signal processing algorithm for detecting anomalies in time series data is proposed in this study. The algorithm is expressed as a combination of wavelet analysis, neural networks and Hilbert transform in a sequential manner. The algorithm has been evaluated for a number of benchmark tests, commonly used in the literature, and has been found to perform robustly.
Original language | English |
---|---|
DOIs | |
Publication status | Published - 2015 |
Event | 6th IEEE International Conference on Information, Intelligence, Systems and Applications - Corfu, Greece Duration: 6 Jul 2015 → 8 Jul 2015 |
Conference
Conference | 6th IEEE International Conference on Information, Intelligence, Systems and Applications |
---|---|
Abbreviated title | IISA2015 |
Country/Territory | Greece |
City | Corfu |
Period | 6/07/15 → 8/07/15 |
Bibliographical note
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Keywords
- anomaly detection
- wavelets
- neural networks
- Hilbert