Abstract
Speed breeding has recently emerged as an innovative agricultural technology solution to meet the ever-increasing global food demand. In speed breeding, typically various light qualities (e.g., colour, duration, intensity) are modified to manipulate the circadian clock of the plants, which in turn alter the plant growth and enhance the productivity such as by reducing the flowering time. In order to develop a comprehensive framework describing plant growth, a model incorporating the effect of various light qualities on plant growth needs to be established. Recently a mathematical model of the plant circadian clock for Arabidopsis thaliana has been developed to characterise the hypocotyl growth subject to multiple light quality properties. This is a first step towards developing a more comprehensive model that links light quality, plant circadian clock and plant growth. In this work, we extend the model by adding the effect of various light qualities on the flowering time. The proposed model can capture the flowering time behaviours of plant when subject to red, blue, and mixed lights and can be used to guide experiment of light properties manipulation for optimised plant growth via hypocotyl growth and flowering time.
Original language | English |
---|---|
Title of host publication | 2022 22nd International Conference on Control, Automation and Systems |
Publisher | IEEE |
Pages | 1848-1853 |
Number of pages | 6 |
ISBN (Electronic) | 9788993215243 |
ISBN (Print) | 9798350345674 |
DOIs | |
Publication status | E-pub ahead of print - 9 Jan 2023 |
Event | 22nd International Conference on Control, Automation and Systems - Busan, Korea, Republic of Duration: 27 Nov 2022 → 1 Dec 2022 |
Publication series
Name | International Conference on Control, Automation and Systems |
---|---|
Volume | 2022-November |
ISSN (Print) | 1598-7833 |
ISSN (Electronic) | 2642-3901 |
Conference
Conference | 22nd International Conference on Control, Automation and Systems |
---|---|
Abbreviated title | ICCAS |
Country/Territory | Korea, Republic of |
City | Busan |
Period | 27/11/22 → 1/12/22 |
Bibliographical note
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.
This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Funding Information:
This work was supported by Coventry University Global Challenge Research Fund (GCRF), Fully Funded Doctoral Studentship Scheme to M.L.P. and the Royal Society (RGS/R2/180195) to M.F. H.A. acknowledges the support by Sêr Cymru II 80761-BU-103 project by Welsh European Funding Office (WEFO) under the Eu-
Publisher Copyright:
© 2022 ICROS.
Keywords
- Arabidopsis thaliana
- Flowering Time
- Light Quality
- Plant Circadian Clock
- Speed Breeding
ASJC Scopus subject areas
- Artificial Intelligence
- Computer Science Applications
- Control and Systems Engineering
- Electrical and Electronic Engineering