An Evidential Fusion Approach for Gender Profiling

J. Ma, W. Liu, P. Miller, H. Zhou

Research output: Contribution to journalArticle

41 Citations (Scopus)
18 Downloads (Pure)

Abstract

CCTV (Closed-Circuit TeleVision) systems are broadly deployed in the present world. To ensure in-time reaction for intelligent surveillance, it is a fundamental task for real-world applications to determine the gender of people of interest. However, normal video algorithms for gender profiling (usually face profiling) have three drawbacks. First, the profiling result is always uncertain. Second, the profiling result is not stable. The degree of certainty usually varies over time, sometimes even to the extent that a male is classified as a female, and vice versa. Third, for a robust profiling result in cases that a person’s face is not visible, other features, such as body shape, are required. These algorithms may provide different recognition results - at the very least, they will provide different degrees of certainties. To overcome these problems, in this paper, we introduce an Dempster-Shafer (DS) evidential approach that makes use of profiling results from multiple algorithms over a period of time, in particular, Denoeux’s cautious rule is applied for fusing mass functions through time lines. Experiments show that this approach does provide better results than single profiling results and classic fusion results. Furthermore, it is found that if severe mis-classification has occurred at the beginning of the time line, the combination can yield undesirable results. To remedy this weakness, we further propose three extensions to the evidential approach proposed above incorporating notions of time-window, time-attenuation, and time-discounting, respectively. These extensions also applies Denoeux’s rule along with time lines and take the DS approach as a special case. Experiments show that these three extensions do provide better results than their predecessor when mis-classifications occur.

Publisher statement: NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, [VOL 333, (2015)] DOI: 10.1016/j.ins.2015.11.011

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Original languageEnglish
Pages (from-to)10-20
JournalInformation Sciences
Volume333
Early online date10 Nov 2015
DOIs
Publication statusPublished - Mar 2016

Fingerprint

Profiling
Fusion
Information science
Fusion reactions
Closed circuit television systems
Quality control
Experiments
Misclassification
Line
Gender
Peer Review
Discounting
Reaction Time
Time Windows
Quality Control
Real-world Applications
Period of time
Attenuation
Surveillance
Experiment

Bibliographical note

NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, [VOL 333, (2015)] DOI: 10.1016/j.ins.2015.11.011

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

  • Gender Profiling
  • Evidence Theory
  • Cautious Rule
  • Time-Window
  • Time-Attenuation
  • Time-Discounting

Cite this

An Evidential Fusion Approach for Gender Profiling. / Ma, J.; Liu, W.; Miller, P.; Zhou, H.

In: Information Sciences, Vol. 333, 03.2016, p. 10-20.

Research output: Contribution to journalArticle

Ma, J. ; Liu, W. ; Miller, P. ; Zhou, H. / An Evidential Fusion Approach for Gender Profiling. In: Information Sciences. 2016 ; Vol. 333. pp. 10-20.
@article{f36784725bf6454c8aecdbbf7056b69d,
title = "An Evidential Fusion Approach for Gender Profiling",
abstract = "CCTV (Closed-Circuit TeleVision) systems are broadly deployed in the present world. To ensure in-time reaction for intelligent surveillance, it is a fundamental task for real-world applications to determine the gender of people of interest. However, normal video algorithms for gender profiling (usually face profiling) have three drawbacks. First, the profiling result is always uncertain. Second, the profiling result is not stable. The degree of certainty usually varies over time, sometimes even to the extent that a male is classified as a female, and vice versa. Third, for a robust profiling result in cases that a person’s face is not visible, other features, such as body shape, are required. These algorithms may provide different recognition results - at the very least, they will provide different degrees of certainties. To overcome these problems, in this paper, we introduce an Dempster-Shafer (DS) evidential approach that makes use of profiling results from multiple algorithms over a period of time, in particular, Denoeux’s cautious rule is applied for fusing mass functions through time lines. Experiments show that this approach does provide better results than single profiling results and classic fusion results. Furthermore, it is found that if severe mis-classification has occurred at the beginning of the time line, the combination can yield undesirable results. To remedy this weakness, we further propose three extensions to the evidential approach proposed above incorporating notions of time-window, time-attenuation, and time-discounting, respectively. These extensions also applies Denoeux’s rule along with time lines and take the DS approach as a special case. Experiments show that these three extensions do provide better results than their predecessor when mis-classifications occur.Publisher statement: NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, [VOL 333, (2015)] DOI: 10.1016/j.ins.2015.11.011{\circledC} 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/",
keywords = "Gender Profiling, Evidence Theory, Cautious Rule, Time-Window, Time-Attenuation, Time-Discounting",
author = "J. Ma and W. Liu and P. Miller and H. Zhou",
note = "NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, [VOL 333, (2015)] DOI: 10.1016/j.ins.2015.11.011 {\circledC} 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/",
year = "2016",
month = "3",
doi = "10.1016/j.ins.2015.11.011",
language = "English",
volume = "333",
pages = "10--20",
journal = "Information Sciences",
issn = "0020-0255",
publisher = "Elsevier",

}

TY - JOUR

T1 - An Evidential Fusion Approach for Gender Profiling

AU - Ma, J.

AU - Liu, W.

AU - Miller, P.

AU - Zhou, H.

N1 - NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, [VOL 333, (2015)] DOI: 10.1016/j.ins.2015.11.011 © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

PY - 2016/3

Y1 - 2016/3

N2 - CCTV (Closed-Circuit TeleVision) systems are broadly deployed in the present world. To ensure in-time reaction for intelligent surveillance, it is a fundamental task for real-world applications to determine the gender of people of interest. However, normal video algorithms for gender profiling (usually face profiling) have three drawbacks. First, the profiling result is always uncertain. Second, the profiling result is not stable. The degree of certainty usually varies over time, sometimes even to the extent that a male is classified as a female, and vice versa. Third, for a robust profiling result in cases that a person’s face is not visible, other features, such as body shape, are required. These algorithms may provide different recognition results - at the very least, they will provide different degrees of certainties. To overcome these problems, in this paper, we introduce an Dempster-Shafer (DS) evidential approach that makes use of profiling results from multiple algorithms over a period of time, in particular, Denoeux’s cautious rule is applied for fusing mass functions through time lines. Experiments show that this approach does provide better results than single profiling results and classic fusion results. Furthermore, it is found that if severe mis-classification has occurred at the beginning of the time line, the combination can yield undesirable results. To remedy this weakness, we further propose three extensions to the evidential approach proposed above incorporating notions of time-window, time-attenuation, and time-discounting, respectively. These extensions also applies Denoeux’s rule along with time lines and take the DS approach as a special case. Experiments show that these three extensions do provide better results than their predecessor when mis-classifications occur.Publisher statement: NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, [VOL 333, (2015)] DOI: 10.1016/j.ins.2015.11.011© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

AB - CCTV (Closed-Circuit TeleVision) systems are broadly deployed in the present world. To ensure in-time reaction for intelligent surveillance, it is a fundamental task for real-world applications to determine the gender of people of interest. However, normal video algorithms for gender profiling (usually face profiling) have three drawbacks. First, the profiling result is always uncertain. Second, the profiling result is not stable. The degree of certainty usually varies over time, sometimes even to the extent that a male is classified as a female, and vice versa. Third, for a robust profiling result in cases that a person’s face is not visible, other features, such as body shape, are required. These algorithms may provide different recognition results - at the very least, they will provide different degrees of certainties. To overcome these problems, in this paper, we introduce an Dempster-Shafer (DS) evidential approach that makes use of profiling results from multiple algorithms over a period of time, in particular, Denoeux’s cautious rule is applied for fusing mass functions through time lines. Experiments show that this approach does provide better results than single profiling results and classic fusion results. Furthermore, it is found that if severe mis-classification has occurred at the beginning of the time line, the combination can yield undesirable results. To remedy this weakness, we further propose three extensions to the evidential approach proposed above incorporating notions of time-window, time-attenuation, and time-discounting, respectively. These extensions also applies Denoeux’s rule along with time lines and take the DS approach as a special case. Experiments show that these three extensions do provide better results than their predecessor when mis-classifications occur.Publisher statement: NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, [VOL 333, (2015)] DOI: 10.1016/j.ins.2015.11.011© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

KW - Gender Profiling

KW - Evidence Theory

KW - Cautious Rule

KW - Time-Window

KW - Time-Attenuation

KW - Time-Discounting

U2 - 10.1016/j.ins.2015.11.011

DO - 10.1016/j.ins.2015.11.011

M3 - Article

VL - 333

SP - 10

EP - 20

JO - Information Sciences

JF - Information Sciences

SN - 0020-0255

ER -