An artificial neural network classification approach for improving accuracy of customer identification in e-commerce

N.S. Safa, N.A. Ghani, M.A. Ismail

Research output: Contribution to journalArticle

12 Citations (Scopus)
1 Downloads (Pure)

Abstract

With the advances in Web-based oriented technologies, experts are able to capture user activities on the Web. Users’ Web browsing behavior is used for user identification. Identifying users during their activities is extremely important in electronic commerce (e-Commerce)as it has the potential to prevent illegal transactions or activities particularly for users who enter the system through the use of unknown methods.In addition, customer behavioral pattern identification provides a wide spectrum of applications such as personalized Web pages, product recommendations and present advertisements. In this research, a framework for users’ behavioral profiling formation is presented and customer behavioral patterns are used for customer identification in the e-Commerce environment. Based on activity control, policies such as user restriction or blocking can be applied.The neural network classification and the measure of similarity among behavioral patterns are two approaches applied in this research. The results of multi-layer perceptron with a back propagation learning algorithm indicate that there is less error and up to 15.12% more accuracy on average.The results imply that the accuracy of the neural network approach in customer pattern behavior recognition increases when the number of customers grows.In contrast, the accuracy of the similarity of pattern method decreases.
Original languageEnglish
Pages (from-to)171-185
Number of pages15
JournalMalaysian Journal of Computer Science
Volume27
Issue number3
Publication statusPublished - 1 Sep 2014

Fingerprint

Electronic commerce
Neural networks
Multilayer neural networks
Backpropagation
Learning algorithms
Websites

Keywords

  • Customer identification
  • Behavioral pattern
  • Profile
  • e-Commerce

Cite this

An artificial neural network classification approach for improving accuracy of customer identification in e-commerce. / Safa, N.S.; Ghani, N.A.; Ismail, M.A.

In: Malaysian Journal of Computer Science, Vol. 27, No. 3, 01.09.2014, p. 171-185.

Research output: Contribution to journalArticle

@article{c060c2e2b42d440a9225aec901f6bf88,
title = "An artificial neural network classification approach for improving accuracy of customer identification in e-commerce",
abstract = "With the advances in Web-based oriented technologies, experts are able to capture user activities on the Web. Users’ Web browsing behavior is used for user identification. Identifying users during their activities is extremely important in electronic commerce (e-Commerce)as it has the potential to prevent illegal transactions or activities particularly for users who enter the system through the use of unknown methods.In addition, customer behavioral pattern identification provides a wide spectrum of applications such as personalized Web pages, product recommendations and present advertisements. In this research, a framework for users’ behavioral profiling formation is presented and customer behavioral patterns are used for customer identification in the e-Commerce environment. Based on activity control, policies such as user restriction or blocking can be applied.The neural network classification and the measure of similarity among behavioral patterns are two approaches applied in this research. The results of multi-layer perceptron with a back propagation learning algorithm indicate that there is less error and up to 15.12{\%} more accuracy on average.The results imply that the accuracy of the neural network approach in customer pattern behavior recognition increases when the number of customers grows.In contrast, the accuracy of the similarity of pattern method decreases.",
keywords = "Customer identification, Behavioral pattern, Profile, e-Commerce",
author = "N.S. Safa and N.A. Ghani and M.A. Ismail",
year = "2014",
month = "9",
day = "1",
language = "English",
volume = "27",
pages = "171--185",
journal = "Malaysian Journal of Computer Science",
number = "3",

}

TY - JOUR

T1 - An artificial neural network classification approach for improving accuracy of customer identification in e-commerce

AU - Safa, N.S.

AU - Ghani, N.A.

AU - Ismail, M.A.

PY - 2014/9/1

Y1 - 2014/9/1

N2 - With the advances in Web-based oriented technologies, experts are able to capture user activities on the Web. Users’ Web browsing behavior is used for user identification. Identifying users during their activities is extremely important in electronic commerce (e-Commerce)as it has the potential to prevent illegal transactions or activities particularly for users who enter the system through the use of unknown methods.In addition, customer behavioral pattern identification provides a wide spectrum of applications such as personalized Web pages, product recommendations and present advertisements. In this research, a framework for users’ behavioral profiling formation is presented and customer behavioral patterns are used for customer identification in the e-Commerce environment. Based on activity control, policies such as user restriction or blocking can be applied.The neural network classification and the measure of similarity among behavioral patterns are two approaches applied in this research. The results of multi-layer perceptron with a back propagation learning algorithm indicate that there is less error and up to 15.12% more accuracy on average.The results imply that the accuracy of the neural network approach in customer pattern behavior recognition increases when the number of customers grows.In contrast, the accuracy of the similarity of pattern method decreases.

AB - With the advances in Web-based oriented technologies, experts are able to capture user activities on the Web. Users’ Web browsing behavior is used for user identification. Identifying users during their activities is extremely important in electronic commerce (e-Commerce)as it has the potential to prevent illegal transactions or activities particularly for users who enter the system through the use of unknown methods.In addition, customer behavioral pattern identification provides a wide spectrum of applications such as personalized Web pages, product recommendations and present advertisements. In this research, a framework for users’ behavioral profiling formation is presented and customer behavioral patterns are used for customer identification in the e-Commerce environment. Based on activity control, policies such as user restriction or blocking can be applied.The neural network classification and the measure of similarity among behavioral patterns are two approaches applied in this research. The results of multi-layer perceptron with a back propagation learning algorithm indicate that there is less error and up to 15.12% more accuracy on average.The results imply that the accuracy of the neural network approach in customer pattern behavior recognition increases when the number of customers grows.In contrast, the accuracy of the similarity of pattern method decreases.

KW - Customer identification

KW - Behavioral pattern

KW - Profile

KW - e-Commerce

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84921625716&partnerID=MN8TOARS

M3 - Article

VL - 27

SP - 171

EP - 185

JO - Malaysian Journal of Computer Science

JF - Malaysian Journal of Computer Science

IS - 3

ER -