Ageing simulation of a hydraulic engine mount: A data-informed finite element approach

Payam Soltani, C. Pinna, D. J. Wagg, R. Whear

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Hydraulic engine mounts are key elements in an automotive vehicle suspension system that typically experience a change of their designed function during their working lifetime due to progressive material ageing, primarily from the elastomeric component. Ageing of the engine mount, resulting from severe and continuous mechanical and thermal loads, can have a detrimental impact on the ride and comfort and long-term customer satisfaction. This paper introduces a new practical methodology for simulating the ageing behaviour of engine mounts resulting from the change in properties of their elastomeric main spring component. To achieve this, a set of dynamic mechanical thermal analysis tests were conducted on elastomeric coupons taken from a set of engine mounts with different service and ageing conditions. These experimental results were used to characterise the change in mechanical response of the elastomer and to build up an empirical elastomer ageing model. Then a finite element model of the main spring was developed that used the elastomer ageing model so that the ageing behaviour of the engine mount could be simulated. The resulting ageing model was verified by using experimental results from a second batch of ex-service engine mounts. The results show an increasing trend of the vertical static stiffness of the engine mounts with distance travelled (or age) up to a certain distance (approximately 95,000 km). The trend is then reversed and a softening effect is observed. Moreover, the results reveal that both the maximum stiffness value and the distance travelled at the peak stiffness decrease as the temperature increases.
LanguageEnglish
Pages(In-Press)
JournalProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Volume(In-Press)
Early online date12 Jul 2018
DOIs
Publication statusE-pub ahead of print - 12 Jul 2018

Fingerprint

Aging of materials
Hydraulics
Engines
Elastomers
Stiffness
Vehicle suspensions
Customer satisfaction
Thermal load
Thermoanalysis
Temperature

Bibliographical note

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

Keywords

  • Hydraulic engine mount
  • elastomer
  • ageing
  • material degradation
  • finite element
  • simulation

Cite this

Ageing simulation of a hydraulic engine mount: A data-informed finite element approach. / Soltani, Payam; Pinna, C.; Wagg, D. J.; Whear, R.

In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. (In-Press), 12.07.2018, p. (In-Press).

Research output: Contribution to journalArticle

@article{1d1552a657ef4d51805b15be4f7ba4fe,
title = "Ageing simulation of a hydraulic engine mount: A data-informed finite element approach",
abstract = "Hydraulic engine mounts are key elements in an automotive vehicle suspension system that typically experience a change of their designed function during their working lifetime due to progressive material ageing, primarily from the elastomeric component. Ageing of the engine mount, resulting from severe and continuous mechanical and thermal loads, can have a detrimental impact on the ride and comfort and long-term customer satisfaction. This paper introduces a new practical methodology for simulating the ageing behaviour of engine mounts resulting from the change in properties of their elastomeric main spring component. To achieve this, a set of dynamic mechanical thermal analysis tests were conducted on elastomeric coupons taken from a set of engine mounts with different service and ageing conditions. These experimental results were used to characterise the change in mechanical response of the elastomer and to build up an empirical elastomer ageing model. Then a finite element model of the main spring was developed that used the elastomer ageing model so that the ageing behaviour of the engine mount could be simulated. The resulting ageing model was verified by using experimental results from a second batch of ex-service engine mounts. The results show an increasing trend of the vertical static stiffness of the engine mounts with distance travelled (or age) up to a certain distance (approximately 95,000 km). The trend is then reversed and a softening effect is observed. Moreover, the results reveal that both the maximum stiffness value and the distance travelled at the peak stiffness decrease as the temperature increases.",
keywords = "Hydraulic engine mount, elastomer, ageing, material degradation, finite element, simulation",
author = "Payam Soltani and C. Pinna and Wagg, {D. J.} and R. Whear",
note = "Copyright {\circledC} and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.",
year = "2018",
month = "7",
day = "12",
doi = "10.1177/0954407018786147",
language = "English",
volume = "(In-Press)",
pages = "(In--Press)",
journal = "Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering",
issn = "0954-4070",
publisher = "Sage",

}

TY - JOUR

T1 - Ageing simulation of a hydraulic engine mount: A data-informed finite element approach

AU - Soltani, Payam

AU - Pinna, C.

AU - Wagg, D. J.

AU - Whear, R.

N1 - Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

PY - 2018/7/12

Y1 - 2018/7/12

N2 - Hydraulic engine mounts are key elements in an automotive vehicle suspension system that typically experience a change of their designed function during their working lifetime due to progressive material ageing, primarily from the elastomeric component. Ageing of the engine mount, resulting from severe and continuous mechanical and thermal loads, can have a detrimental impact on the ride and comfort and long-term customer satisfaction. This paper introduces a new practical methodology for simulating the ageing behaviour of engine mounts resulting from the change in properties of their elastomeric main spring component. To achieve this, a set of dynamic mechanical thermal analysis tests were conducted on elastomeric coupons taken from a set of engine mounts with different service and ageing conditions. These experimental results were used to characterise the change in mechanical response of the elastomer and to build up an empirical elastomer ageing model. Then a finite element model of the main spring was developed that used the elastomer ageing model so that the ageing behaviour of the engine mount could be simulated. The resulting ageing model was verified by using experimental results from a second batch of ex-service engine mounts. The results show an increasing trend of the vertical static stiffness of the engine mounts with distance travelled (or age) up to a certain distance (approximately 95,000 km). The trend is then reversed and a softening effect is observed. Moreover, the results reveal that both the maximum stiffness value and the distance travelled at the peak stiffness decrease as the temperature increases.

AB - Hydraulic engine mounts are key elements in an automotive vehicle suspension system that typically experience a change of their designed function during their working lifetime due to progressive material ageing, primarily from the elastomeric component. Ageing of the engine mount, resulting from severe and continuous mechanical and thermal loads, can have a detrimental impact on the ride and comfort and long-term customer satisfaction. This paper introduces a new practical methodology for simulating the ageing behaviour of engine mounts resulting from the change in properties of their elastomeric main spring component. To achieve this, a set of dynamic mechanical thermal analysis tests were conducted on elastomeric coupons taken from a set of engine mounts with different service and ageing conditions. These experimental results were used to characterise the change in mechanical response of the elastomer and to build up an empirical elastomer ageing model. Then a finite element model of the main spring was developed that used the elastomer ageing model so that the ageing behaviour of the engine mount could be simulated. The resulting ageing model was verified by using experimental results from a second batch of ex-service engine mounts. The results show an increasing trend of the vertical static stiffness of the engine mounts with distance travelled (or age) up to a certain distance (approximately 95,000 km). The trend is then reversed and a softening effect is observed. Moreover, the results reveal that both the maximum stiffness value and the distance travelled at the peak stiffness decrease as the temperature increases.

KW - Hydraulic engine mount

KW - elastomer

KW - ageing

KW - material degradation

KW - finite element

KW - simulation

U2 - 10.1177/0954407018786147

DO - 10.1177/0954407018786147

M3 - Article

VL - (In-Press)

SP - (In-Press)

JO - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering

T2 - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering

JF - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering

SN - 0954-4070

ER -