TY - JOUR
T1 - Adrenomedullin receptor is found exclusively in noradrenaline-secreting cells of the rat adrenal medulla
AU - Renshaw, D.
AU - Thomson, L.M.
AU - Michael, G.J.
AU - Carroll, M.
AU - Kapas, S.
AU - Hinson, J.P.
PY - 2000/4
Y1 - 2000/4
N2 - Adrenomedullin, originally identified in the adrenal medulla, has binding sites in the adrenal gland; however, its role in the adrenal medulla is unclear. This study was designed to characterise adrenomedullin binding sites in the rat adrenal medulla, using ligand binding studies, immunocytochemistry, and mRNA analysis. A single population of specific adrenomedullin receptors was identified in adrenal medullary homogenates. 125I-Adrenomedullin was displaced only by adrenomedullin1-50 and not by calcitonin gene-related peptide or amylin at concentrations up to 100 nmol/L. The receptor KD was 3.64 nmol/L with a receptor density of 570 fmol/mg of protein. Analysis of mRNA revealed that the genes encoding both the putative adrenomedullin receptors, termed calcitonin receptor-like receptor (CRLR) and L1, were expressed in the rat adrenal medulla. Dual-colour indirect-labelled immunofluorescence was used to localise phenylethanolamine N-methyltransferase (PNMT) and the adrenomedullin receptor in the same section. PNMT is the enzyme that converts noradrenaline to adrenaline and is not expressed in noradrenaline-secreting cells. These studies revealed that both CRLR and L1 were expressed only in cells that did not express PNMT, suggesting that adrenomedullin receptors are only found in noradrenaline-secreting cells. Further evidence to support this conclusion was provided by the demonstration of colocalisation of adrenomedullin receptors with dopamine β-hydroxylase, confirming the presence of the receptors in medullary chromaffin cells. Taken together, these data suggest that adrenomedullin acts through a specific adrenomedullin receptor in the rat adrenal medulla. RT-PCR and northern blot analysis revealed greater abundance of mRNA for L1 than for CRLR, possibly suggesting that L1 may be the major adrenomedullin receptor expressed in this tissue. As it has been reported that adrenomedullin is synthesised predominantly by adrenaline-secreting cells, it appears likely that adrenomedullin is a paracrine regulator in the adrenal medulla.
AB - Adrenomedullin, originally identified in the adrenal medulla, has binding sites in the adrenal gland; however, its role in the adrenal medulla is unclear. This study was designed to characterise adrenomedullin binding sites in the rat adrenal medulla, using ligand binding studies, immunocytochemistry, and mRNA analysis. A single population of specific adrenomedullin receptors was identified in adrenal medullary homogenates. 125I-Adrenomedullin was displaced only by adrenomedullin1-50 and not by calcitonin gene-related peptide or amylin at concentrations up to 100 nmol/L. The receptor KD was 3.64 nmol/L with a receptor density of 570 fmol/mg of protein. Analysis of mRNA revealed that the genes encoding both the putative adrenomedullin receptors, termed calcitonin receptor-like receptor (CRLR) and L1, were expressed in the rat adrenal medulla. Dual-colour indirect-labelled immunofluorescence was used to localise phenylethanolamine N-methyltransferase (PNMT) and the adrenomedullin receptor in the same section. PNMT is the enzyme that converts noradrenaline to adrenaline and is not expressed in noradrenaline-secreting cells. These studies revealed that both CRLR and L1 were expressed only in cells that did not express PNMT, suggesting that adrenomedullin receptors are only found in noradrenaline-secreting cells. Further evidence to support this conclusion was provided by the demonstration of colocalisation of adrenomedullin receptors with dopamine β-hydroxylase, confirming the presence of the receptors in medullary chromaffin cells. Taken together, these data suggest that adrenomedullin acts through a specific adrenomedullin receptor in the rat adrenal medulla. RT-PCR and northern blot analysis revealed greater abundance of mRNA for L1 than for CRLR, possibly suggesting that L1 may be the major adrenomedullin receptor expressed in this tissue. As it has been reported that adrenomedullin is synthesised predominantly by adrenaline-secreting cells, it appears likely that adrenomedullin is a paracrine regulator in the adrenal medulla.
KW - Adrenomedullin receptor
KW - Phenyleth-anolamineN-methyltransferase
KW - Chromaffin cells
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-0034071272&partnerID=MN8TOARS
U2 - 10.1046/j.1471-4159.2000.0741766.x
DO - 10.1046/j.1471-4159.2000.0741766.x
M3 - Article
SN - 0022-3042
VL - 74
SP - 1766
EP - 1772
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 4
ER -