Abstract
The requirements to maneuver a modem aircraft involve the development and realization of advanced control of a longitudinal and lateral aircraft motion. The manual control system for independent motion control of an aircraft on rolling and sideslip angles is given in (Guskov and Zagainov, 1980). The system depends upon a real-time measurement of air-dynamic coefficients of the aircraft, or requires the information from the tabulated parameters on all regimes of the aircraft motion. However, methods of precise measurement of air-dynamic coefficients in non-stationary conditions of the aircraft motion are not yet available at the present time. The exact parameters for all regimes of the aircraft motion cannot be obtained from a-priory measurements either. Therefore, a complete decoupled motion of an aircraft cannot be achieved.
In this paper the solution for a decoupled motion of an aircraft is obtained in the class of non-searching adaptive control systems with a reference model (Petrov et. al, 1980). The new algorithms developed in this paper achieve a decoupled motion with desirable dynamic precision even in the conditions of high non-stationary of parameters. The robustness of the control system to the interaction of subsystems is accomplished as well.
In this paper the solution for a decoupled motion of an aircraft is obtained in the class of non-searching adaptive control systems with a reference model (Petrov et. al, 1980). The new algorithms developed in this paper achieve a decoupled motion with desirable dynamic precision even in the conditions of high non-stationary of parameters. The robustness of the control system to the interaction of subsystems is accomplished as well.
Original language | English |
---|---|
Pages (from-to) | 345-350 |
Number of pages | 6 |
Journal | IFAC papers online |
Volume | 34 |
Issue number | 19 |
DOIs | |
Publication status | Published - Sept 2001 |
Event | IFAC Symposium on Intelligent Autonomous Vehicles (IAV2001) - Sapporo, Japan Duration: 5 Sept 2001 → 7 Sept 2001 |