Abstract
Due to the presence of algebraic constraints as well as existing of different modes of operation, a standalone solar power system consisting of photovoltaic
arrays, battery bank, electrical load, and a converter is becoming a complex system that can no longer be modeled using the conventional block diagram approach. While the block diagram approach is based on causal interactions between a chain of the ordinary differential equations (ODE), a more appropriate acausal approach solves a flat model of the system consisting of hybrid differential algebraic equations (HDAE). In effect, this paper proposes a nonlinear HDAE-based model of a standalone solar power system. The proposed model is
presented using the Modelica language that allows object-oriented and acausal modeling of the multi-mode systems. Next, a general purpose solver is employed to simulate the system. The results of the simulation shows proper match with the information available in the components datasheet. It is shown that the simulation provides a sufficiently accurate prediction of all the system
behaviors, which is vital for any model-based controller, including mode transitions.
arrays, battery bank, electrical load, and a converter is becoming a complex system that can no longer be modeled using the conventional block diagram approach. While the block diagram approach is based on causal interactions between a chain of the ordinary differential equations (ODE), a more appropriate acausal approach solves a flat model of the system consisting of hybrid differential algebraic equations (HDAE). In effect, this paper proposes a nonlinear HDAE-based model of a standalone solar power system. The proposed model is
presented using the Modelica language that allows object-oriented and acausal modeling of the multi-mode systems. Next, a general purpose solver is employed to simulate the system. The results of the simulation shows proper match with the information available in the components datasheet. It is shown that the simulation provides a sufficiently accurate prediction of all the system
behaviors, which is vital for any model-based controller, including mode transitions.
Original language | English |
---|---|
Title of host publication | Simulation Notes Europe SNE |
Pages | 171-178 |
Number of pages | 8 |
Volume | 23 |
Edition | 3-4 |
Publication status | Published - 2013 |