Abstract
In this paper, a two-stage stochastic mathematical model is developed for an asset protection routing problem under a wildfire. The main aim of this study is to reduce the negative impact of a wildfire. Some parameters, such as travel and service times, obtaining profit by protecting an asset, and upper bounds of time windows, are considered as stochastic parameters. Generating proper scenarios for uncertain parameters has a large impact on the accuracy of the obtained solutions. Therefore, artificial neural networks are employed to extract possible scenarios according to previous actual wildfire events. The problem cannot be solved by exact solvers for large instances, so two matheuristic algorithms are proposed in this study to solve the problem in a reasonable time. In the first algorithm, a set of feasible routes is generated based on a heuristic approach, then a route-based mathematical model is used to obtain the final solution. Also, another matheuristic algorithm based on adaptive large neighbourhood search (ALNS) is proposed. In this algorithm, routing decisions are determined using the ALNS algorithm while other decisions are achieved by solving an intermediate mathematical model. The numerical analysis confirms the efficiency of both proposed algorithms; however, the first algorithm performs more efficiently.
Original language | English |
---|---|
Pages (from-to) | 81-113 |
Number of pages | 33 |
Journal | International Journal of Production Research |
Volume | 61 |
Issue number | 1 |
Early online date | 7 Sept 2022 |
DOIs | |
Publication status | Published - Jan 2023 |
Bibliographical note
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Keywords
- Asset protection
- location routing
- two-stage stochastic programming
- neural network
- matheuristic algorithm