A self-propelled robotic system with a visco-elastic joint: Dynamics and Motion Analysis

Pengcheng Liu, M. Nazmul Huda, Zhichuan Tang, Li Sun

    Research output: Contribution to journalArticlepeer-review

    16 Citations (Scopus)
    77 Downloads (Pure)

    Abstract

    This paper studies the dynamics and motion generation of a self-propelled robotic system with a visco-elastic joint. The system is underactuated, legless and wheelless, and has potential applications in environmental inspection and operation in restricted spaces which are inaccessible to human beings, such as pipeline inspection, medical assistance and disaster rescue. Locomotion of the system relies on the stick–slip effects, which interacts with the frictional force of the surface in contact. The nonlinear robotic model utilizes combined tangential-wise and normal-wise vibrations for underactuated locomotion, which features a generic significance for the studies on self-propelled systems. To identify the characteristics of the visco-elastic joint and shed light on the energy efficacy, parameter dependences on stiffness and damping coefficients are thoroughly analysed. Our studies demonstrate that the dynamic behaviour of the self-propelled system is mainly periodic and desirable forward motion is achieved via identification of the variation laws of the control parameters and elaborate selection of the stiffness and damping coefficients. A motion generation strategy is developed, and an analytical two-stage motion profile is proposed based on the system response and dynamic constraint analysis, followed by a parameterization procedure to optimally generate the trajectory. The proposed method provides a novel approach in generating self-propelled locomotion, and designing and computing the visco-elastic parameters for energy efficacy. Simulation results are presented to demonstrate the effectiveness and feasibility of the proposed model and motion generation approach.
    Original languageEnglish
    Pages (from-to)655-669
    Number of pages15
    JournalEngineering with Computers
    Volume36
    Issue number2
    Early online date26 Feb 2019
    DOIs
    Publication statusPublished - Apr 2020

    Bibliographical note

    The final publication is available at Springer via http://dx.doi.org/10.1007/s00366-019-00722-3
    Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

    Funding

    FundersFunder number
    National Natural Science Foundation of China61702454, 61803396
    Ministry of Education China17YJC870018

      Keywords

      • Self-propelled system
      • Stick-slip motions
      • Visco-elastic property
      • Motion trajectory generation
      • Underactuation

      Fingerprint

      Dive into the research topics of 'A self-propelled robotic system with a visco-elastic joint: Dynamics and Motion Analysis'. Together they form a unique fingerprint.

      Cite this