Abstract
Industrial Internet-of-Things (IIoT) is a powerful IoT application which remodels the growth of industries by ensuring transparent communication among various entities such as hubs, manufacturing places and packaging units. Introducing data science techniques within the IIoT improves the ability to analyze the collected data in a more efficient manner, which current IIoT architectures lack due to their distributed nature. From a security perspective, network anomalies/attackers pose high security risk in IIoT. In this paper, we have addressed this problem, where a coordinator IoT device is elected to compute the trust of IoT devices to prevent the malicious devices to be part of network. Further, the transparency of the data is ensured by integrating a blockchain-based data model. The performance of the proposed framework is validated extensively and rigorously via MATLAB against various security metrics such as attack strength, message alteration, and probability of false authentication. The simulation results suggest that the proposed solution increases IIoT network security by efficiently detecting malicious attacks in the network.
Original language | English |
---|---|
Pages (from-to) | 1894-1902 |
Number of pages | 9 |
Journal | IEEE Transactions on Industrial Informatics |
Volume | 19 |
Issue number | 2 |
Early online date | 13 Jun 2022 |
DOIs | |
Publication status | Published - 1 Feb 2023 |
Bibliographical note
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.
This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Keywords
- Blockchain
- Industrial Internet-of-Things (IIoT)
- secure IoT devices
- security
- trust management
ASJC Scopus subject areas
- Control and Systems Engineering
- Information Systems
- Computer Science Applications
- Electrical and Electronic Engineering