A preliminary mechanical design evaluation of the Wikispeed car: for light-weighting implications

Siddharth Kulkarni, Craig Chapman, Edwards John David

Research output: Contribution to journalArticle

11 Downloads (Pure)

Abstract

Purpose: Road passenger transportation faces a global challenge of reducing environmental pollution and greenhouse gas emissions because of the vehicle weight increases needed to enhance passenger safety and comfort. This paper aims to present a preliminary mechanical design evaluation of the Wikispeed Car (with a focus on body bending, body torsion and body crash) to assess light-weighting implications and improve the vehicle’s environmental performance without compromising safety. Design/methodology/approach: For this research, finite element analysis (FEA) was performed to examine the Wikispeed chassis for light-weighting opportunities in three key aspects of the vehicle’s design, namely, for body bending the rockers (or longitudinal tubes), for body torsion (again on the rockers but also the chassis as a whole) and for crash safety – on the frontal crash structure. A two-phase approach was adopted, namely, in phase one, a 3D CAD geometry was generated and in phase, two FEA was generated. The combination of analysis results was used to develop the virtual model using FEA tools, and the model was updated based on the correlation process. Findings: The research revealed that changing the specified material Aluminium Alloy 6061-T651 to Magnesium EN-MB10020 allows vehicle mass to be reduced by an estimated 110 kg, thus producing a concomitant 10 per cent improvement in fuel economy. The initial results imply that the current beam design made from magnesium would perform worst during a crash as the force required to buckle the beam is the lowest (between 95.2 kN and 134 kN). Steel has the largest bandwidth of force required for buckling and also requires the largest force for buckling (between 317 kN and 540 kN). Originality/value: This is the first study of its kind to compare and contrast between material substitution and its impact upon Wikispeed car safety and performance.

Original languageEnglish
Pages (from-to)230-249
Number of pages20
JournalJournal of Engineering, Design and Technology
Volume17
Issue number1
Early online date12 Dec 2018
DOIs
Publication statusPublished - 4 Feb 2019

Fingerprint

Railroad cars
Chassis
Finite element method
Torsional stress
Buckling
Magnesium
Fuel economy
Gas emissions
Greenhouse gases
Aluminum alloys
Computer aided design
Pollution
Substitution reactions
Bandwidth
Geometry
Steel

Bibliographical note

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

Keywords

  • Emission reduction
  • Finite element analysis
  • Greenhouse gas emissions
  • Light-weight materials
  • Wikispeed car

ASJC Scopus subject areas

  • Engineering(all)

Cite this

A preliminary mechanical design evaluation of the Wikispeed car : for light-weighting implications. / Kulkarni, Siddharth; Chapman, Craig; David, Edwards John .

In: Journal of Engineering, Design and Technology, Vol. 17, No. 1, 04.02.2019, p. 230-249.

Research output: Contribution to journalArticle

@article{76455dd0270e46a7975838e67d82afe2,
title = "A preliminary mechanical design evaluation of the Wikispeed car: for light-weighting implications",
abstract = "Purpose: Road passenger transportation faces a global challenge of reducing environmental pollution and greenhouse gas emissions because of the vehicle weight increases needed to enhance passenger safety and comfort. This paper aims to present a preliminary mechanical design evaluation of the Wikispeed Car (with a focus on body bending, body torsion and body crash) to assess light-weighting implications and improve the vehicle’s environmental performance without compromising safety. Design/methodology/approach: For this research, finite element analysis (FEA) was performed to examine the Wikispeed chassis for light-weighting opportunities in three key aspects of the vehicle’s design, namely, for body bending the rockers (or longitudinal tubes), for body torsion (again on the rockers but also the chassis as a whole) and for crash safety – on the frontal crash structure. A two-phase approach was adopted, namely, in phase one, a 3D CAD geometry was generated and in phase, two FEA was generated. The combination of analysis results was used to develop the virtual model using FEA tools, and the model was updated based on the correlation process. Findings: The research revealed that changing the specified material Aluminium Alloy 6061-T651 to Magnesium EN-MB10020 allows vehicle mass to be reduced by an estimated 110 kg, thus producing a concomitant 10 per cent improvement in fuel economy. The initial results imply that the current beam design made from magnesium would perform worst during a crash as the force required to buckle the beam is the lowest (between 95.2 kN and 134 kN). Steel has the largest bandwidth of force required for buckling and also requires the largest force for buckling (between 317 kN and 540 kN). Originality/value: This is the first study of its kind to compare and contrast between material substitution and its impact upon Wikispeed car safety and performance.",
keywords = "Emission reduction, Finite element analysis, Greenhouse gas emissions, Light-weight materials, Wikispeed car",
author = "Siddharth Kulkarni and Craig Chapman and David, {Edwards John}",
note = "Copyright {\circledC} and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.",
year = "2019",
month = "2",
day = "4",
doi = "10.1108/JEDT-09-2018-0154",
language = "English",
volume = "17",
pages = "230--249",
journal = "Journal of Engineering, Design and Technology",
issn = "1726-0531",
publisher = "Emerald",
number = "1",

}

TY - JOUR

T1 - A preliminary mechanical design evaluation of the Wikispeed car

T2 - for light-weighting implications

AU - Kulkarni, Siddharth

AU - Chapman, Craig

AU - David, Edwards John

N1 - Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

PY - 2019/2/4

Y1 - 2019/2/4

N2 - Purpose: Road passenger transportation faces a global challenge of reducing environmental pollution and greenhouse gas emissions because of the vehicle weight increases needed to enhance passenger safety and comfort. This paper aims to present a preliminary mechanical design evaluation of the Wikispeed Car (with a focus on body bending, body torsion and body crash) to assess light-weighting implications and improve the vehicle’s environmental performance without compromising safety. Design/methodology/approach: For this research, finite element analysis (FEA) was performed to examine the Wikispeed chassis for light-weighting opportunities in three key aspects of the vehicle’s design, namely, for body bending the rockers (or longitudinal tubes), for body torsion (again on the rockers but also the chassis as a whole) and for crash safety – on the frontal crash structure. A two-phase approach was adopted, namely, in phase one, a 3D CAD geometry was generated and in phase, two FEA was generated. The combination of analysis results was used to develop the virtual model using FEA tools, and the model was updated based on the correlation process. Findings: The research revealed that changing the specified material Aluminium Alloy 6061-T651 to Magnesium EN-MB10020 allows vehicle mass to be reduced by an estimated 110 kg, thus producing a concomitant 10 per cent improvement in fuel economy. The initial results imply that the current beam design made from magnesium would perform worst during a crash as the force required to buckle the beam is the lowest (between 95.2 kN and 134 kN). Steel has the largest bandwidth of force required for buckling and also requires the largest force for buckling (between 317 kN and 540 kN). Originality/value: This is the first study of its kind to compare and contrast between material substitution and its impact upon Wikispeed car safety and performance.

AB - Purpose: Road passenger transportation faces a global challenge of reducing environmental pollution and greenhouse gas emissions because of the vehicle weight increases needed to enhance passenger safety and comfort. This paper aims to present a preliminary mechanical design evaluation of the Wikispeed Car (with a focus on body bending, body torsion and body crash) to assess light-weighting implications and improve the vehicle’s environmental performance without compromising safety. Design/methodology/approach: For this research, finite element analysis (FEA) was performed to examine the Wikispeed chassis for light-weighting opportunities in three key aspects of the vehicle’s design, namely, for body bending the rockers (or longitudinal tubes), for body torsion (again on the rockers but also the chassis as a whole) and for crash safety – on the frontal crash structure. A two-phase approach was adopted, namely, in phase one, a 3D CAD geometry was generated and in phase, two FEA was generated. The combination of analysis results was used to develop the virtual model using FEA tools, and the model was updated based on the correlation process. Findings: The research revealed that changing the specified material Aluminium Alloy 6061-T651 to Magnesium EN-MB10020 allows vehicle mass to be reduced by an estimated 110 kg, thus producing a concomitant 10 per cent improvement in fuel economy. The initial results imply that the current beam design made from magnesium would perform worst during a crash as the force required to buckle the beam is the lowest (between 95.2 kN and 134 kN). Steel has the largest bandwidth of force required for buckling and also requires the largest force for buckling (between 317 kN and 540 kN). Originality/value: This is the first study of its kind to compare and contrast between material substitution and its impact upon Wikispeed car safety and performance.

KW - Emission reduction

KW - Finite element analysis

KW - Greenhouse gas emissions

KW - Light-weight materials

KW - Wikispeed car

UR - http://www.scopus.com/inward/record.url?scp=85058488800&partnerID=8YFLogxK

U2 - 10.1108/JEDT-09-2018-0154

DO - 10.1108/JEDT-09-2018-0154

M3 - Article

VL - 17

SP - 230

EP - 249

JO - Journal of Engineering, Design and Technology

JF - Journal of Engineering, Design and Technology

SN - 1726-0531

IS - 1

ER -