A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains

Hamid Taghavifar, Subhash Rakheja, Giulio Reina

Research output: Contribution to journalArticlepeer-review

Abstract

An immense body of research has focused on path-planning and following of wheeled robots in unstructured surfaces. Nonholonomic robots traveling over deformable terrains together with complex operating conditions, however, pose further challenges in terms of a higher demand for robustness and optimality. In this paper, a Chaos-enhanced Accelerated Particle Swarm Optimization (CAPSO) algorithm is employed for planning an optimal path of a wheeled robot, so as to ensure shortest path from the starting point to the target location together with safety through guaranteed avoidance of collisions with static and dynamic obstacles. The fundamental terramechanics concepts are employed to derive essential forces and moments acting on the wheeled robot. Subsequently, a kineto-dynamic model of the robot is developed for designing a novel robust control algorithm based on an exponential-integral-sliding mode (EISMC) scheme and a RBF-NN approximator. The results revealed that the proposed algorithm is responsive and robust to withstand adverse effects of structured and unstructured uncertainties by using the designed adaptation law according to the Lyapunov stability theorem. The effectiveness of the proposed algorithm is also validated against several reported frameworks.

Original languageEnglish
Pages (from-to)147-157
Number of pages11
JournalJournal of Terramechanics
Volume96
Early online date29 Dec 2020
DOIs
Publication statusE-pub ahead of print - 29 Dec 2020

Keywords

  • Artificial Intelligence
  • Path-planning
  • PSO
  • Terrain
  • Terramechancis

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'A novel optimal path-planning and following algorithm for wheeled robots on deformable terrains'. Together they form a unique fingerprint.

Cite this