Abstract
With the development of e-shopping, there is a significant growth in clothing purchases online. However, the virtual clothing fit evaluation is still under-researched. In the literature, the thickness of the air layer between the human body and clothes is a dominant geometric indicator to evaluate the clothing fit. However, such an approach has only been applied to the stationary positions of the mannequin/human body. Physical indicators such as the pressure/tension of a virtual garment fitted on the virtual body in a continuous motion are also proposed for clothing fit evaluation. Neither geometric nor physical evaluations consider the interaction of the garment with the body, e.g., the sliding of the garment along the human body. In this study, a new framework was proposed to automatically determine the dynamic air gap thickness. First, the dynamic dressed character sequence was simulated in three-dimensional (3D) clothing software via importing the body parameters, cloth parameters, and a walking motion. Second, a cost function was defined to convert the garment in the previous frame to the local coordinate of the next frame. The dynamic air gap thickness between clothes and the human body was determined. Third, a new metric, the 3D garment vector field was proposed to represent the movement flow of the dynamic virtual garment, whose directional changes are calculated by cosine similarity. Experimental results show that our method is more sensitive to the small air gap thickness changes compared with state-of-the-art methods, allowing it to more effectively evaluate clothing fit in a virtual environment.
Original language | English |
---|---|
Pages (from-to) | 4148-4161 |
Number of pages | 14 |
Journal | Textile Reseach Journal |
Volume | 89 |
Issue number | 19-20 |
Early online date | 13 Feb 2019 |
DOIs | |
Publication status | Published - Oct 2019 |
Externally published | Yes |
Bibliographical note
Open access CC BYFunder
This work was supported in part by the European Commission Erasmus Mundus Action 2 Programme (Ref: 2014-0861/001-001), the Engineering and Physical Sciences Research Council (EPSRC) (Ref: EP/M002632/1), and the Royal Society (Ref: IES\R2\181024, IE160609).Keywords
- dynamic air gap thickness
- garment sliding
- body–clothes interaction
- D garment vector field (3DGVF)
- dynamic clothing fit