A multi scale multi-dimensional thermo electrochemical modelling of high capacity lithium-ion cells

Abbas Tourani, Peter White, P. Ivey

    Research output: Contribution to journalArticlepeer-review

    39 Citations (Scopus)

    Abstract

    Lithium iron phosphate (LFP) and lithium manganese oxide (LMO) are competitive and complementary to each other as cathode materials for lithium-ion batteries, especially for use in electric vehicles. A multi scale multi-dimensional physic-based model is proposed in this paper to study the thermal behaviour of the two lithium-ion chemistries. The model consists of two sub models, a one dimensional (1D) electrochemical sub model and a two dimensional (2D) thermo-electric sub model, which are coupled and solved concurrently. The 1D model predicts the heat generation rate (Qh) and voltage (V) of the battery cell through different load cycles. The 2D model of the battery cell accounts for temperature distribution and current distribution across the surface of the battery cell. The two cells are examined experimentally through 90 h load cycles including high/low charge/discharge rates. The experimental results are compared with the model results and they are in good agreement. The presented results in this paper verify the cells temperature behaviour at different operating conditions which will lead to the design of a cost effective thermal management system for the battery pack.
    Original languageEnglish
    Pages (from-to)360-367
    JournalJournal of Power Sources
    Volume255
    DOIs
    Publication statusPublished - 2014

    Bibliographical note

    The full text of this item is not available from the repository.

    Keywords

    • lithium-ion
    • modelling
    • thermo electrochemical
    • electric vehicle
    • temperature distribution

    Fingerprint

    Dive into the research topics of 'A multi scale multi-dimensional thermo electrochemical modelling of high capacity lithium-ion cells'. Together they form a unique fingerprint.

    Cite this