A hybrid of bacterial foraging and differential evolution -based distance of sequences

Muhammad Marwan Muhammad Fuad

    Research output: Contribution to journalConference articlepeer-review

    3 Citations (Scopus)
    39 Downloads (Pure)

    Abstract

    In a previous work we presented a new distance that we called the sigma gram distance, which is used to compute the similarity between two sequences. This distance is based on parameters which we computed through an optimization process that used the artificial bee colony; a bio-inspired optimization algorithm. In this paper we show how a hybrid of two optimization algorithms; bacterial foraging and differential evolution, when used to compute the parameters of the sigma gram distance, can yield better results than those obtained by applying artificial bee colony. This superiority in performance is validated through experiments on the same data sets to which artificial bee colony, on the same optimization problem, was tested.

    Original languageEnglish
    Pages (from-to)101-110
    Number of pages10
    JournalProcedia Computer Science
    Volume35
    DOIs
    Publication statusPublished - 1 Jan 2014
    EventInternational Conference on Knowledge-Based and Intelligent Information and Engineering Systems, KES 2014 - Gdynia, Poland
    Duration: 15 Sept 201417 Sept 2014
    http://kes2014.kesinternational.org/

    Bibliographical note

    © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
    (http://creativecommons.org/licenses/by-nc-nd/3.0/).

    Keywords

    • Bacterial foraging
    • Differential evolution
    • Sigma gram distance

    ASJC Scopus subject areas

    • Computer Science(all)

    Fingerprint

    Dive into the research topics of 'A hybrid of bacterial foraging and differential evolution -based distance of sequences'. Together they form a unique fingerprint.

    Cite this