Abstract
Research into the thermo-hydro-mechanical (THM) behavior of unsaturated soils and the effect of strain rate on their mechanical responses requires employment of advanced laboratory testing systems and procedures as well as protocols of correcting the measured data in order to account for errors associated with complex test conditions and apparatus calibrations. This paper presents design and calibration of an innovative constant-rate-of-strain (CRS) oedometer cell for characterization of the THM behavior of soils under combined non-isothermal and unsaturated conditions. The advanced oedometer cell enables for simultaneous control of temperature, suction, and stress state within the soil specimens. Temperatures of 20 to 200° C is applied through a tubular heating element placed at the base of the soil specimen. Suction is controlled using axis-translation technique, and measured using both axis-translation and two high-capacity tensiometers (HCTs) accommodated on the periphery of the specimen. The performance of the new cell is assessed based on a set of tests performed on clay specimens and its merits and advantages are discussed in detail.
Original language | English |
---|---|
Article number | GTJ20180204 |
Number of pages | 18 |
Journal | Geotechnical Testing Journal |
Volume | 43 |
Issue number | 1 |
Early online date | 21 Feb 2019 |
DOIs | |
Publication status | Published - 2019 |
Bibliographical note
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.Keywords
- oedometer
- strain rate
- temperature
- suction
- tensiometer
- water retention
- Calibration