Abstract
This paper presents an overview of the empirical performance of some of the common methods for parameter selection in the area of enhanced dynamic kernel density and distribution estimation with exponentially declining weights. It is shown that exponential weighting delivers accurate nonparametric density and quantile evaluations, without common corrections for scale and/or location in most of the financial time series considered, provided that parameters are chosen appropriately with computationally heavy Least-Squares routines. For more time-efficient numerical optimisations and/or simple kernel adaptive estimation strategies, Least-Squares routines may be re-written with exponentially weighted binned kernel estimators. This insures equally effective parameters evaluation under the different choices of kernel functional forms, though binning strategy becomes an important component of estimations. On the other hand, it is also highlighted that if the estimations target is to mine time-varying nonparametric quantiles, kernel functional forms and bandwidths may not be necessary for these evaluations. Combining exponential weights with empirical distribution estimator provides a very similar quantile performance to the kernel enhanced estimator, while parametric specifications may provide a better extreme quantiles outlook.
Original language | English |
---|---|
Article number | 101038 |
Journal | North American Journal of Economics and Finance |
Volume | 50 |
Early online date | 26 Jul 2019 |
DOIs | |
Publication status | Published - Nov 2019 |
Externally published | Yes |
Bibliographical note
NOTICE: this is the author’s version of a work that was accepted for publication in North American Journal of Economics and Finance, Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in North American Journal of Economics and Finance, 50, (2019) DOI: 10.1016/j.najef.2019.101038© 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/10.1016/j.najef.2019.101038
Keywords
- Exponential smoothing
- Kernel density estimation
- Binned kernel density and distribution
- Generalized autoregressive score models
- Probability integral transforms
- Time-varying quantiles